Source: Moscow Institute of Physics and Technology – Московский физико-технический институт –
Ученые выяснили, что количество энергии, необходимое для разрыва полимерных сеток, может значительно превышать энергию разрыва ее цепочек. Большая часть этой энергии тратится не на разрыв цепей, а на деформацию древовидной внутренней структуры материала. Обнаруженный механизм позволит создавать более прочные полимерные материалы. Результаты исследования представлены в международном научном журнале Macromolecules.
Полимеры разной степень сложности окружают нас повсюду: от промышленности до медицины. В подавляющем большинстве, это полимерные сети: в своей внутренней структуре это не сплошное упругое тело, а система, которая состоит из древовидных, «жидкоподобных» структур полимерных цепей.
Высокая разрывная прочность таких полимерных сеток объясняется главным образом тем, что макромолекулы могут достигать высокой степени ориентации относительно друг друга и иметь большую плотность и разветвленность упаковки, что приводит к возникновению многочисленных межмолекулярных связей с высокой суммарной энергией.
Ученые МФТИ в партнерстве с зарубежными коллегами исследовали механизм образования разрыва в полимерных сетках, и выяснили, что для образования трещины недостаточно разорвать одну полимерную цепочку, требуется повлиять на все «дерево» полимерных цепей в сетках.
Рис. 1 Схематическое изображение древовидной структуры с функциональностью перекрестных связей в вершине трещины.
Таким образом, работа, которую необходимо совершить для разрыва сложного полимерного материала, зависит не только от прочности цепей сетки, но и от прочности древовидной структуры материала, которая зависит от числа «поколений» этого дерева. Таким образом, чем более разветвленная и многоуровневая структура в полимерном материале, тем он прочнее на разрыв.
Второй вывод, который получили исследователи при построении новой модели, связан с включением в сети молекул-механофоров. Механофоры – это механически активные молекулы в самой структуре полимера, которые способны вызывать ряд химических реакций при воздействии на них.
«По сравнению с «сильными» механофорами (активируются только в мостиковой цепи полимера), «слабые» механофоры, которые могут работать как в мостиковой цепи, так и в других генерациях, способны обеспечить более интенсивное рассеивание энергии внутри материала, упрочняя его», – добавил Сергей Панюков.
Обновленная модель, полученная в результате исследования, дает возможность создания более совершенных полимерных сетей с повышенными прочностными характеристиками.
Обратите внимание; Эта информация является необработанным контентом непосредственно из источника информации. Это точно соответствует тому, что утверждает источник, и не отражает позицию MIL-OSI или ее клиентов.
Please note; This information is raw content directly from the information source. It is accurate to what the source is stating and does not reflect the position of MIL-OSI or its clients.